Question	Expected Answers	Marks	Additional guidance
1 (a)	The magnitude of the impulse on each object is the same	B1	For 3 or 4 ticks mark and deduct
, ,	Total energy is conserved	B1	1 mark for each error.
(b) (i)	Correct use of ½ mv ²	C1	0.27 J scores 1 st mark
	Loss of KE = 0.03(144-81) = 1.9 (or 1.89) J	A1	Do not allow 1.8
(b) (ii)	Change in momentum = $(0.06x12)+(0.06x9) = 1.26$ (Ns)	C1	Award 1 mark for 1.2 N
	Average force=rate of change of momentum = 1.26/0.15 = 8.4 (or 8) N	A1	ignore minus signs
(b) (iii)	8.4 N (or - 8.4)	B1	Allow ecf from (ii)
(c) (i)	ANY 3 of the following		Allow
	particles move with <u>rapid</u> , <u>random</u> motion (WTTE)	B1	" gravitational force on
	elastic collisions	B1	molecules is negligible"
	negligible (or zero) volume of atoms (compared with volume of container)	B1	Do not allow a bare
	no intermolecular forces (except during collisions)/all internal energy is KE		"large number of particles".
	collision time negligible (compared to time between collision).		
(c) (ii)	molecules make collisions with walls/surface (WTTE)	B1	Do not allow a bare "molecules
, , , ,	(hence) exerts a force on the wall (or each collision has a change of		collide with each other"
	momentum)	B1	
	Pressure = force/area	B1	
	Total	13	

Question	Expected Answers	Marks	Additional guidance
2 (a) (i)	Initial KE of car = $0.5x970x27^2 = 3.5 \times 10^5 \text{ J}$ (353565J)	B1	
(a) (ii)	Work done = Av Force x distance moved	C1	If $v^2 = u^2 + 2as$ is used. accept
	Av Force = $3.5 \times 10^5 \text{ J/40} = 8.8 \times 10^3 \text{ N}$ (or 8750 N)	A1	$a = 0-27^2/(2x40) = 9.113 \text{ ms}^{-2} \text{ C1}$
	(or 353565/40 = 8836.7 N)		$F = ma = 970x9.11 = 8.84 x 10^3 N A1$
	Assumption: no air resistance	B1	Allow air friction or drag
(b) (i)	correct use of E = $mc\Delta\theta$: 3.5 x $10^5/4 = 1.2x520x\Delta\theta$	C1	If cand. forgets to divide by 4 allow any value
	$\Delta\theta = 140^{\circ}$ C (if 353565 is used $\Delta\theta = 142^{\circ}$ C)	A1	between 560 and 570 for 1 mark.
(b) (ii)	Air resistance will be acting (slowing down the car)	M1	Do not allow sound since only a tiny
	(hence) reducing the KE of the car (WTTE)	A1	proportion of energy is lost in this way.
			Allow other valid comments as alternative
	The discs are hotter than the surroundings	B1	ways of scoring one or both of the 'B' marks:
	(hence) energy/heat will be lost from discs/brakes (WTTE)	B1	e.g. 'hot spots' on discs; discs are different.
			Try to credit a well argued case based upon
			correct physics- e.g. wheels locking.
(b) (iii)	Any valid suggestion: e.g. use a material with a higher s.h.c		Confusion between shc and heat capacity
	use a disc with a higher heat capacity	B1	should not be penalised.
	Use discs of greater mass		
	put holes in the discs (to increase air flow)		
	Total	11	

Question		on	Answer	Marks	Guidance
3	(a)	(i)	Collision in which kinetic energy is conserved	B1	Allow: no ke lost (wtte)
		(ii)	Any <u>four</u> from		Symbols must be defined in formulae
			Many molecules collide with the walls		
			 A change in momentum occurs when molecule(s) collide with (and rebound from) the walls of container 		
			Force is rate of change of momentum		
			 The force exerted by the molecule(s) on wall is equal to force exerted by the wall on the molecule(s) (by Newton's third law) 		
			pressure (on wall) = (total) force (on wall) / area (of wall)	B1 x 4	
		(iii)	Any <u>two</u> from		
			Molecules move faster/have greater <u>kinetic</u> energy (at higher temperature)		
			There is an increased <u>rate</u> of collision / more collisions occur <u>per second</u> / collisions occur <u>more often</u>	B1 x 2	Not: greater force Not: harder collisions
			Each collision involves a greater change in momentum		
	(b)	($P_1V_1/T_1 = P_2V_2/T_2$	C1	
			with T stated in Kelvin or clearly shown in subsequent working		
			$P_2 = 105 \times 5 \times 10^3 \times (273 - 30) / (273 + 20) \times 1.2 \times 10^4$	C1	Temperatures must be in kelvin to score this mark.
			$P_2 = 36 \text{ (kPa)}$	A1	Allow : consistent working in pascal
		(ii)	Risk that balloon will burst (with further increase in volume)	B1	Allow: pop / explode
			Total	11	